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Transposable elements (TEs) are major components of the intergenic regions of the genome. However, TE
transposition has the potential to threaten the reproductive fitness of the organism; therefore, organisms
have evolved specialized molecular systems to sense and repress the expression of TEs to stop them
from jumping to other genomic loci. Emerging evidence suggests that Argonaute proteins play a critical
role in this process, in collaboration with two types of cellular small RNAs: PIWI-interacting RNAs (piRNAs)
of the germline and endogenous small interfering RNAs (endo-siRNAs) of the soma, both of which are tran-
scribed from TEs themselves.
Introduction
Transposable elements (TEs) were discovered in maize by

Barbara McClintock in the 1940s. Since then, various TEs and

TE-like sequences have been identified in many species. World-

wide genome projects have revealed that TEs are actually

major genomic components. For example, TEs comprise 45%

of the human genome (Lander et al., 2001) and 15%–22% of

the genome of Drosophila melanogaster (Kapitonov and Jurka,

2003; Biémont and Vieira, 2006). TEs can be separated into

Class 1 and Class 2, based on their structures and modes of

integration (Gogvadze and Buzdin, 2009). Class 1 comprises

retrotransposons and retrotransposon-like elements, such

as LINEs and SINEs, which replicate via transcribed mRNA

intermediates that are converted back into DNA throughmultiple

rounds of reverse transcription. The retrotransposon DNAs

thus transpose into the genome by a mechanism analogous to

‘‘copy and paste.’’ Class 2 TEs consist of DNA transposons

only. Unlike retrotransposons, DNA transposons move directly

from place to place through a ‘‘cut and paste’’ process.

The significance and biological implications of TEs and TE-

like sequences have been thoroughly reviewed (Goodier and

Kazazian 2008; Gogvadze and Buzdin, 2009). TEs can occa-

sionally play beneficial roles in organisms. Transposition of

LINE-1 elements contributes to genetic diversity in neuronal

progenitor cells during the development of the nervous system

(Coufal et al., 2009). LINE-1 expression may contribute to

the establishment of X inactivation in ES cells (Chow et al.,

2010). The human endogenous retrovirus (HERV-W) encodes

an envelope protein named syncytin, which plays important

roles in trophoblast cell fusion and placental morphogenesis

(Mi et al., 2000). The telomeric ends of linear chromosomes

are protected by TEs in Drosophila (Pardue et al., 2005). And

in many organisms, heterochromatic centromeres, which are

crucial for the segregation of chromosomes during cell divi-

sion, consist of repeats and TEs (e.g., Volpe et al., 2002).

However, the mobilization of TEs is often considered delete-

rious because it leads to genomic structural rearrangements,

such as deletions, duplications, and inversions. Organisms
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have thus developed effective strategies that constrain TE

transposition.

One suchmechanism is mediated by small RNAs, in a process

that is highly analogous to RNA interference (RNAi) or RNA

silencing (Ghildiyal and Zamore, 2009; Kim et al., 2009; Malone

and Hannon, 2009; Siomi et al., 2008; Siomi and Siomi, 2009;

Thomson and Lin, 2009). RNA silencing is triggered by small

RNAs 20–30 nucleotides (nt) in length, which are often, if not

universally, processed from double-stranded RNAs (dsRNAs)

by the enzyme Dicer. The small RNAs are then loaded onto

members of the Argonaute family of proteins. Argonaute proteins

bind target transcripts by means of base pairing between the

small RNA and the target; this interaction confers target speci-

ficity on Argonaute regulation of transcription, transcript stability,

and/or translation. Accumulating evidence indicates that TEs are

silenced by similar (transcriptional or posttranscriptional) mech-

anisms, in which small RNAs and Argonaute proteins play key

roles.

The numbers and types of Argonaute family members differ

between species (Cerutti et al., 2000). In the paradigmatic

example of Drosophila, five Argonaute proteins are expressed.

Among these, the AGO proteins (AGO1 and AGO2) are ubiqui-

tous, whereas the others (AGO3, Aubergine [Aub], and Piwi)

are gonad specific (Williams andRubin, 2002) and are generically

referred to as PIWI proteins (Carmell et al., 2002). PIWI-interact-

ing small RNAs (piRNAs) are mainly derived from intergenic

regions containing TEs, TE remnants, and other repetitive

elements (O’Donnell and Boeke, 2007; Klattenhoff and Theur-

kauf, 2008; Siomi and Kuramochi-Miyagawa, 2009), and muta-

tions in PIWI genes cause derepression of TEs in gonadal cells

(Aravin et al., 2001; Kalmykova et al., 2005; Savitsky et al.,

2006; Sarot et al., 2004; Vagin et al., 2006; Li et al., 2009).

Thus, PIWI/piRNA complexes protect the integrity of the germ-

line by suppressing TE expression and mobilization there.

Conversely, AGO2-associated small RNAs have a similar role

in nongonadal somatic cells (Golden et al., 2008; Okamura and

Lai, 2008; Ghildiyal and Zamore, 2009). The endogenous small

RNAs associated with AGO2 also arise from intergenic elements
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Figure 1. The piRNA Clusters Form Two
Groups: Uni-Strand and Dual-Strand
Clusters
The uni-strand clusters are transcribed in only
one direction whereas the dual-strand clusters
produce piRNAs from both strands. The sense
(blue) and antisense (red) transcripts are comple-
mentary to each other. However, piRNAs are
produced in a manner independent of Dicer
activity; thus, it is implied that they are produced
from single-stranded TE precursors (green, red,
and blue). After processing, mature piRNAs are
loaded onto PIWI proteins (Aub, Piwi, and AGO3)
and silence TEs by mechanisms whose details
remain elusive.
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that contain TE fragments and repeats, and are now referred

to as endogenous small interfering RNAs (endo-siRNAs or

esiRNAs). AGO/endo-siRNA components and PIWI/piRNA com-

ponents are highly conserved in vertebrates and invertebrates,

and they all function in TE silencing.

In this review, we discuss how piRNAs and endo-siRNAs

are produced and how these small RNAs silence TEs, focusing

on studies in Drosophila melanogaster and then comparing

and contrasting with other organisms such as mice, frogs, and

zebrafish.

PIWI Proteins in Drosophila

The piwi gene was originally discovered as an essential factor

for germline stem cell self-renewal in Drosophila (Lin and

Spradling, 1997; Cox et al., 1998). Further investigation

showed that mutations in piwi cause hyperactivation of retro-

transposons (Vagin et al., 2006; Klenov et al., 2007). Likewise,

the paralogous aub gene is necessary for pole cell formation

(Harris and Macdonald, 2001) and transposon silencing (Vagin

et al., 2006), and PIWI genes are commonly required for

female fertility (Cox et al., 1998; Schmidt et al., 1999; Li

et al., 2009).

The PIWI proteins show different subcellular localization and

expression patterns, suggesting distinct and discrete roles.

Among the PIWI proteins, only Piwi is localized in the nucleus

(Cox et al., 2000), and its primary function in TE silencing appears

to be in the nucleus (Saito et al., 2010). In ovaries, Piwi can be de-

tected in both somatic and germ cells (Cox et al., 2000; Saito

et al., 2006; Brennecke et al., 2007; Nishida et al., 2007). In the

testes, however, Piwi is barely detectable in germ cells but is

strongly expressed in somatic niche cells, which associate with

and maintain the germline stem cells. Aub and AGO3 are

expressed in the germ cells of both males and females, but are

absent in gonadal somatic cells. Unlike Piwi, Aub and AGO3

are exclusively detected in the cytoplasm at steady-state levels
688 Developmental Cell 19, November 16, 2010 ª2010 Elsevier Inc.
and accumulate in the nuage (Brennecke

et al., 2007; Gunawardane et al., 2007;

Nishida et al., 2007; Li et al., 2009),

an electron-dense perinuclear structure

characteristic of germline cells in diverse

animals (al-Mukhtar and Webb, 1971;

Eddy, 1975). These observations indicate

that the PIWI proteins possess distinct
functions and utilize different systems for expression and

subcellular localization.

piRNAs in Drosophila

The first direct link between PIWI proteins and TEs was the

discovery of piRNAs, defined as small RNAs associated with

PIWI proteins in any organism. Typically, piRNAs are 23–30 nt

long. Sequencing of piRNAs in Drosophila has revealed that

theymainly originate from TEs and TE-related genomic elements

(Saito et al., 2006; Brennecke et al., 2007; Gunawardane et al.,

2007; Yin and Lin, 2007). Whereas miRNAs are processed by

Dicer from double-stranded primary precursors (Lee et al.,

2004), piRNAs are produced in a Dicer-independent manner

from single-stranded precursors (Vagin et al., 2006). piRNAs

are considerably more heterogeneous than miRNAs. More than

70% of piRNAs have been cloned only once, indicating that

the piRNA population is very complex, in clear contrast to the

miRNA population, which consists of approximately 170 species

in Drosophila (Brennecke et al., 2007; Yin and Lin, 2007).

Mapping of piRNAs on the Drosophila genome revealed that

several hundred genomic regions could be referred to as piRNA

clusters. These clusters contribute to the generation of piRNAs,

most of which encode TEs and TE remnants and are mainly

localized in the pericentromeric and subtelomeric heterochro-

matin regions.

The piRNA clusters fall into two groups: dual-strand and uni-

strand clusters (Figure 1). The dual-strand clusters produce

piRNAs from both genomic strands, with the representative

being 42AB on chromosome 2. The uni-strand clusters are

transcribed in only one direction and are represented by the

flamenco (flam) locus on chromosome X. The flam locus was

first discovered as a regulator of the activity of the retroviral

gypsy, idefix, and ZAM elements (Pélisson et al., 1994; Desset

et al., 2008). Antisense-oriented copies of these retro-elements

in the flam locus result in the production of mainly antisense



Figure 2. Models for piRNA Biogenesis in
Drosophila Ovaries
(A) The piRNA 42AB locus on chromosome 2 is
transcribed in both directions and the sense and
antisense transcripts serve as piRNA precursors.
Rhino associates with DNA from this locus and is
required for its transcription. The production of
42AB-derived piRNAs occurs in germline cells in
ovaries. These piRNAs are later amplified by the
ping-pong cycle.
(B) The flam piRNA locus on chromosome X gives
rise to transcripts in one direction. The flam-
derived piRNAs are loaded onto Piwi and are not
amplified. These processes occur only in the
ovarian somatic cells.
(C) Amplification of piRNAs derived from the
primary processing pathway. The piRNAs depos-
ited from the mother to the offspring are also
subject to the ping-pong cycle, specifically in the
germline cells of the ovary.
(D) Aub and Piwi associated with piRNAs accumu-
late at the posterior pole of the oocytes in
egg chambers. In developing embryos, the Aub-
and Piwi-piRNA complexes are incorporated
into the primordial germ cells. AGO3 does not
seem to be passed from the mother to the
offspring.
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piRNAs (Figure 2; Brennecke et al., 2007). Although the mech-

anisms of transcription from the uni-strand piRNA clusters

remain unclear, recent chromatin immunoprecipitation analysis

revealed that the heterochromatin protein 1 (HP1) homolog

Rhino associates with DNA of the dual-strand 42AB cluster

and is required for its transcription. In rhino mutant ovaries,

the level of piRNAs was decreased by around 80% compared

with wild-type ovaries, and in parallel, a significant reduction

in putative precursor RNA was observed, suggesting that

Rhino possibly promotes the transcription of all the dual-

strand clusters, initiating piRNA biogenesis (Klattenhoff et al.,

2009).

piRNA Biogenesis in Drosophila: Ping-Pong
Amplification
Examination of the nucleotide preferences of piRNAs associ-

ated with Piwi and Aub in Drosophila ovaries has shown that

they have a strong bias for uracil (U) at their 50 end (1-U) and

are mainly antisense to active TE transcripts (Saito et al.,

2006; Brennecke et al., 2007; Gunawardane et al., 2007; Yin

and Lin, 2007). In contrast, piRNAs bound to AGO3 are mostly

derived from the sense transcripts of TEs and show a strong
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bias for adenosine (A) at the tenth nucle-

otide from their 50 end (10-A). In fact, the

first 10 nucleotides of antisense piRNAs

frequently overlap with the sense

piRNAs. These findings (including the

1-U/10-A relationship) are referred to as

the ping-pong signature; they imply that

AGO3-associated piRNAs may pair with

Aub- (and Piwi-) associated piRNAs

through their first 10 nucleotides (Bren-

necke et al., 2007; Gunawardane et al.,

2007). Moreover, recombinant Piwi,
Aub, and AGO3 cleave complementary target RNAs between

nucleotides 10 and 11 of small guiding RNAs (Gunawardane

et al., 2007), suggesting an intriguing model in which PIWI

proteins generate 50 ends of piRNAs and amplify piRNAs from

longer (e.g., conventional) transcripts in a Slicer-dependent

manner (Figure 2). This model is called the ping-pong cycle or

amplification loop and explains why piRNAs are generated in

a Dicer-independent manner, in contrast to siRNAs and miRNAs

(Vagin et al., 2006).

In the ping-pong cycle, the Aub complex associated with an

antisense piRNA specifically cleaves TE transcripts in the sense

orientation. Therefore, the ping-pong cycle not only produces

piRNAs but also degrades TE mRNAs at the same time. This

model was confirmed by a recent study on ago3 mutant flies

(Li et al., 2009). In ago3 mutants, the number of Aub-bound

piRNAs was markedly decreased and their antisense strand

bias was weakened from 71% to 41%. Some TEs were dere-

pressed in ago3mutants, as in aubmutants. These observations

support the notion that TE silencing and piRNA biogenesis are

coupled (Li et al., 2009). Thus, the seeds to initiate the ping-

pong cycle are supplied by the primary processed or maternally

deposited piRNAs (see below).
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Figure 3. Phylogenetic Tree of Piwi Proteins in Fleis, Mice, Frogs,
and Zebrafish
Colors: flies, orange; mice, dark blue; frogs, pink; and zebrafish, sky blue. The
tree was based on ClustalW alignment of the predicted peptide sequences of
PIWI proteins. Piwi: D. melanogaster NP_476875; Aub: D. melanogaster
CAA64320; Ago3: D. melanogaster ABO27430; Ziwi: D. rerio NP_899181;
Zili: D. rerio ABM46842; Miwi: M. musculus NM_021311; Miwi2: M. musculus
NM_177905;Mili:M.musculusNM_021308. The peptide sequences of Xiwi1a,
Xiwi1b, Xiwi2, and Xili were retrieved from Wilczynska et al. (2009).
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piRNA Biogenesis in Drosophila: The Primary
Processing Pathway
Although Aub- and AGO3-associated piRNAs are mainly

produced by the ping-pong cycle, Piwi-associated piRNAs

show few ping-pong signatures, suggesting a ping-pong-inde-

pendent piRNA biogenesis pathway (Brennecke et al., 2007).

Piwi is required for the silencing of a subset of TEs in gonadal

somatic cells. In fact, the majority of Piwi-associated piRNAs in

ovaries are derived from the flam uni-strand cluster, which is

expressed only in the soma (Brennecke et al., 2007). Further

studies suggested the idea that flam piRNAs are loaded onto

Piwi by a mechanism distinct from the amplification cycle

(Malone et al., 2009; Li et al., 2009). In the ovarian somatic cell

(OSC) line, which contains only somatic cells of fly ovaries,

Piwi is expressed, but Aub and AGO3 are not, suggesting that

the piRNAs in OSCs are produced by the primary processing

pathway but are not amplified further by the amplification cycle

(Saito et al., 2009). In OSCs, Piwi is associated with abundant

piRNAs, including flam-derived piRNAs, confirming that flam-

piRNAs are produced only by the primary pathway (Figure 2).

Mechanisms of PIWI-piRNA-Mediated Silencing
Aub and AGO3 show Slicer activity (the RNaseH-like endonu-

clease activity of their PIWI domains) in vitro (Gunawardane

et al., 2007) and localize in the cytoplasm in vivo (Nishida et al.,

2007; Li et al., 2009). Therefore, Aub-piRNA and AGO3-piRNA

complexes most probably silence TEs posttranscriptionally by

cleaving their transcripts. The Aub-piRNA complex may also

induce mRNA decay to silence target genes such as nanos, the

embryonic posterior morphogen, by recruiting deadenylation

enzyme CCR4 and the RNA-binding protein Smaug to the target

mRNA (Rouget et al., 2010). How then do Piwi and the somatic

primary piRNAsact to silenceTEs?Onemodel is Slicer-mediated

RNA cleavage, because recombinant Piwi produced from E. coli

possesses Slicer activity (Saito et al., 2006). Another feasible

model is that Piwi is involved in heterochromatic gene silencing.

This model was suggested from the observations that Piwi influ-

ences position-effect variegation (PEV) (Pal-Bhadra et al., 2004).

PEV is a probabilistic variegation in gene silencing that depends

on the genomic locus; for example, if a euchromatic gene were

relocated in closeproximity to heterochromatin throughagenetic

rearrangement such as inversion or translocation, there is a high

chance that this gene will be silenced by the heterochromatin.

It has also been shown that HP1a and Piwi associate specifically

with heterochromatin-containing TEs, such as 1360 and F

element. Piwi may direct HP1a on heterochromatin to silence

TEs in early-stage embryos (Pal-Bhadra et al., 2004). However,

piwi mutations resulted in an increase of HP1 association with

the 3R-TAS subtelomeric region in ovaries and subsequently

increased transcriptional silencing, suggesting that Piwi might

act as an activator of TEs at 3R-TAS (Yin and Lin, 2007). In

addition, a recent study showed that HP1 recruitment on hetero-

chromatin does not depend on Piwi (Moshkovich and Lei, 2010).

The mechanism by which the piRNA pathway contributes to

heterochromatin regulation thus remains controversial.

piRNA-Mediated TE Repression in Vertebrates
PIWI proteins are conserved in vertebrates (Figure 3) and have

conserved functions in TE silencing and germ cell development.
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In mice, three PIWI proteins, mouse Piwi (Miwi), Miwi-like (Mili),

and Miwi2 (Kuramochi-Miyagawa et al., 2001, 2004; Deng and

Lin, 2002; Carmell et al., 2007), have been characterized, and

loss of each leads to derepression of TEs and spermatogenic

arrest (Kuramochi-Miyagawa et al., 2001, 2004; Aravin et al.,

2007a; Carmell et al., 2007). Mili expression begins in primordial

germ cells at embryonic day (E) 12.5 and continues throughout

adult spermatogenesis, up to the round spermatid stage (Kura-

mochi-Miyagawa et al., 2004). Miwi2 is transiently expressed in

embryonic gonocytes fromE15.5, with its expression decreasing

after birth, prior to meiosis (Aravin et al., 2008, Kuramochi-Miya-

gawa et al., 2008). Miwi is specific to meiotic and postmeiotic

spermatogenesis of the adult; it is expressed from pachytene

to round spermatid stages (Kuramochi-Miyagawa et al., 2001;

Deng and Lin, 2002). piRNAs isolated from PIWI proteins at

each developmental stage can be divided into three groups:

prenatal piRNAs, prepachytene piRNAs, and pachytene piRNAs.

Mili and Miwi2 associate with prenatal piRNAs, largely corre-

sponding to TEs in fetal gonads (Aravin et al., 2007a, 2008;

Kuramochi-Miyagawa et al., 2008). At the prepachytene stage,

Mili, the only Piwi protein expressed at this stage, associates

with prepachytene piRNAs containing both TE and non-TE

sequences (Aravin et al., 2007a, 2008; Kuramochi-Miyagawa

et al., 2008). Miwi associates with pachytene piRNAs derived

from non-TE elements, with only 12%–17% of pachytene

piRNAs corresponding to TEs (Aravin et al., 2006; Girard et al.,

2006; Grivna et al., 2006; Watanabe et al., 2006). Consistent

with the distinct temporal profiles of each paralog and its asso-

ciated piRNAs, the loss of zebrafish Mili (Zili) leads to the expres-

sion of TEs in the developing gonad and early failure of germline

development, while the loss of zebrafish Miwi (Ziwi) causes

apoptosis later in the germline, at the premeiotic stage. In zebra-

fish and Xenopus, the majority of piRNAs correspond to TEs

(Houwing et al., 2008; Kirino et al., 2009; Lau et al., 2009), similar

to piRNAs in Drosophila. Unlike Drosophila and mice, the
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Xenopus genome contains numerous DNA transposons (Jurka

et al., 2005), and thus the proportion of piRNAs targeting DNA

transposons is high (Lau et al., 2009). These studies indicate

that piRNA content differs with development and the genomic

context.

Accumulating evidence has demonstrated that piRNA biogen-

esis occurs through the primary piRNA processing and the

amplification loop in mice, frogs, and zebrafish (Aravin et al.,

2007b; Ghildiyal and Zamore, 2009; Houwing et al., 2007; Kim

et al., 2009; Malone and Hannon, 2009). In gonocytes of fetal

mice, where both Mili and Miwi2 are expressed, the ping-pong

signature is obvious between Mili-associating sense 10-A

piRNAs and Miwi2-associating antisense 1-U piRNAs. More-

over, the ping-pong signature is found in zebrafish and Xenopus

(Kirino et al., 2009; Lau et al., 2009; Houwing et al., 2008), which

strongly supports the existence of conserved mechanisms of

biogenesis in vertebrates. Interestingly, piRNA amplification is

not limited to cycles between distinct PIWI proteins. At the pre-

pachytene stage, Mili shows a tendency to associate with both

1-U and 10-A piRNAs during a certain period (Aravin et al.,

2007a). Similar to Mili, Ziwi may be able to amplify piRNAs

without Zili expression (Houwing et al., 2008), suggesting that

PIWI proteins self-amplify piRNAs via the amplification loop.

Taken together, these studies indicate that, as in Drosophila,

TE mRNAs in vertebrates are degraded by PIWI proteins via

a ping-pong cycle.

Intriguingly, Mili and Miwi2 mutant mice exhibit loss of DNA

methylation in TEs. Further studies have clarified that the Mili-

andMiwi2-piRNA complexes are involved in de novo DNAmeth-

ylation of TEs (Aravin et al., 2008; Kuramochi-Miyagawa et al.,

2008). In general, CpG DNA methylation causes stable repres-

sion of transcription (Bourc’his and Bestor, 2004). However, it

remains unclear how piRNAs are involved in DNA methylation.

Scaffolds and Modifiers of piRNA Pathways
Tudor (Tud) was identified as a nuage component required for

gametogenesis in classical genetic analyses of the Drosophila

germline (Boswell and Mahowald, 1985; Thomson and Lasko,

2004, 2005; Arkov et al., 2006). More recently, biochemical and

structural studies have revealed that the Tudor domains of Tud

bind directly to symmetrical dimethyl arginines (sDMAs) in PIWI

proteins (Kirino et al., 2009; Nishida et al., 2009; Liu et al.,

2010). This arginine methylation is mediated by the methyltrans-

ferase PRMT5 (also known as Dart5/Capsuleen) (Kirino et al.,

2009), which is also required for germline development.

Complexes consisting of Tud, Aub, and AGO3 are heteromeric

and contain RNAs resembling the precursors for both sense

and antisense piRNAs (Nishida et al., 2009). This suggests the

involvement of Tud in piRNA biogenesis, e.g., as a platform for

piRNA amplification. Loss of Tud function in ovaries causes

Aub to be associated with a greater abundance of piRNAs

compared with Aub in wild-type ovaries (Nishida et al., 2009).

The population of TE-derived piRNAs was significantly altered

by loss of Tud function, although an obvious change in the strand

bias was not seen in the mutants (Nishida et al., 2009). Loss of

dprmt5 diminishes piRNA association with Aub (Nishida et al.,

2009), suggesting that sDMA modification itself influences the

RNA-binding capacity of PIWI proteins, independently of Tudor

domain proteins.
D

Inmice too, Tudor-domain-containingproteins (or Tdrds) asso-

ciate with PIWI proteins specifically through sDMA modification

(Chen et al., 2009; Kojima et al., 2009; Reuter et al., 2009; Shoji

et al., 2009;Vaginet al., 2009;Wanget al., 2009). Tdrd1 is required

for efficient operationof theping-pongcycle (Vaginet al., 2009). In

Tdrd1 and Tdrd9 mutants, the sequence profile of piRNAs is

altered (Reuter et al., 2009;Shoji et al., 2009). Thus, Tudor domain

proteins have conserved roles in the quality control of trans-

poson-derived piRNAs (Table 1; Siomi et al., 2010).

Tejas, another Tud-domain protein expressed in Drosophila

ovaries, also associates with Aub (Patil and Kai, 2010). However,

unlike Tudor, Tejas does not seem to require sDMAmodification

to associate with Aub. In Tejas mutants, steady-state levels of

piRNAs were low and TEs reactivated; thus, Tejas modulates

piRNA biogenesis. krimper (Lim and Kai, 2007), zucchini (zuc)

(Pane et al., 2007), spn-E (Vagin et al., 2006), and maelstrom

(mael) (Findley et al., 2003; Lim and Kai, 2007) also affect piRNA

accumulation, and TEs are derepressed in the ovaries ofmutants

for all these genes (Table 1; Vagin et al., 2006; Lim and Kai, 2007;

Pane et al., 2007). Deep-sequencing of piRNAs in these mutants

has shown distinct requirements: for example, spn-E mutations

reduce not only piRNA amplification but also the production of

primary piRNAs originating from cluster 2, one of ping-pong-

independent uni-strand clusters (Malone et al., 2009). However,

spn-E is apparently unnecessary for producing primary piRNAs

from flam in ovary (Malone et al., 2009). On the other hand,

zuc, which encodes a putative nuclease, is necessary for

somatic primary piRNA processing but not for the ping-pong

cycle (Haase et al., 2010; Malone et al., 2009; Olivieri et al.,

2010; Saito et al., 2010). These observations suggest that piRNA

pathway components perform different and specific roles in

piRNA biogenesis in Drosophila. Krimper and Spn-E contain

Tud domains; however, whether they interact with PIWI proteins

through sDMAs remain unknown.

Krimper, Zuc, and Mael localize to the nuage, suggesting that

nuage might be an important site of piRNA processing in germ

cells. Recent studies indicate that Yb bodies consisting of Yb

and Armitage (Armi) are the sites for somatic primary piRNA pro-

cessing (Olivieri et al., 2010; Saito et al., 2010). Both Armi and Yb

contain an RNA helicase domain and therefore are implicated in

RNA metabolism. In fact, mutations in Armi cause a severe

decrease in piRNA accumulation in ovaries (Vagin et al., 2006).

In Armi- or Yb-depleted cells of the ovarian soma, Piwi is not

associated with piRNAs and mislocalizes to the cytoplasm,

resulting in a general loss of piRNAs, and suggesting that Armi

and Yb are piRNA biogenesis modulators. Yb contains a Tud

domain; however, its function remains undetermined. In mice,

piRNA pathway components exhibit differential localization.

Miwi2/Tdrd9/Mael colocalizes with the components of Process-

ing bodies referred to as piP-bodies, whereas Mili/Tdrd1/

MVH/GASZ associates with the intermitochondrial cement or

pi-bodies (Aravin et al., 2009; Ma et al., 2009; Shoji et al.,

2009; Kuramochi-Miyagawa et al., 2010). piP-body formation

depends on pi-bodies, and Miwi2 fails to associate with piRNAs

when pi-bodies are not formed. On the other hand, pi-body

formation is not affected by piP-body disruption, suggesting

a possible progression of piRNA processing from pi-body to

piP-body. Thus, both piP-bodies and pi-bodies are implicated

as the sites for piRNA biogenesis in mice. It will be interesting
evelopmental Cell 19, November 16, 2010 ª2010 Elsevier Inc. 691



Table 1. Features of TE-Derived Small RNAs in Animals

Mouse Frog Zebrafish Fly Function/Motif References

Small RNA piRNA piRNA piRNA piRNA reviewed in Klattenhoff

and Theurkauf, 2008;

Siomi and Kuramochi-

Miyagawa, 2009;

Ghildiyal and Zamore,

2009; Kim et al., 2009;

Malone and Hannon,

2009; Thomson and Lin,

2009; Lau, 2010; Senti

and Brennecke, 2010

Size (nt) 25–30 26–31 27–30 24–30 see entry above

Nucleotide

preference

5’U; 10th A 5’U; 10th A 5’U; 10th A 5’U; 10th A see entry above

Associated

Argonaute

protein

Miwi; Mili;

Miwi2

Xiwi1a,1b;

Xili; Xiwi2

Ziwi; Zili Piwi; Aub;

AGO3

see entry above

Amplification

of small RNA

(5’U-10thA)

Mili-Miwi2;

Mili-Mili

not determined Ziwi-Zili Piwi-AGO3;

Aub-AGO3

see entry above

Other factors

required for small

RNA-mediated

TE silencing

Tdrd-1 Tdrd-1* Tdrd-1* Tudor, MYND Vagin et al., 2009;

Reuter et al., 2009

Tdrd-9 Tdrd-9* Tdrd-9* Spindle E Tudor, DEXDc Shoji et al., 2009;

Vagin et al., 2006

Maelstrom Maelstrom* Maelstrom* Maelstrom HMG Soper et al., 2008;

Lim and Kai, 2007

Tdrd-6* Tdrd-6* Tdrd-6* Krimper Tudor Lim and Kai, 2007

Mov10l1 Mov10l1* Mov10l1* Armitage Helicase? Zheng et al., 2010;

Frost et al., 2010;

Vagin et al., 2006

Tdrd-7*/Tdrd-5* Tdrd-7*/Tdrd-5* Tdrd-7*/Tdrd-5* Tejas Tudor Patil and Kai, 2010

MVH DDX4* Vasa* Vasa DEAD Kuramochi-Miyagawa

et al., 2010; Lim and

Kai, 2007

PLD6* PLD6* PLD6* Zucchini Nuclease? Pane et al., 2007

Squash Nuclease? Pane et al., 2007

PRMT5* PRMT5* PRMT5* dPRMT5 Methyltransferase Kirino et al., 2009

Fs(1)Yb Tudor Olivieri et al., 2010;

Saito et al., 2010

GASZ GASZ* GASZ* CG2183* ANK repeat Ma et al., 2009

Genes marked with an asterisk show that the involvement on piRNA-mediated TE silencing has not been confirmed experimentally.
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to determinewhat the specificity of these structuresmight be, for

example, whether primary and ping-pong processes are differ-

entially localized between them.

Germline Transmission and Hybrid Dysgenesis
The complex relationship between nuage architecture, germline

development, and piRNA pathways suggests that the broader

implications of piRNA-mediated germline integrity control are

worth considering. During ovary development, Aub and Piwi

accumulate in specialized cytoplasm at the posterior pole of

the oocyte, where germ cell determinants are localized (Rongo

and Lehmann, 1996). Maternally deposited Aub and Piwi are

thus incorporated into the primordial germ cells that inherit this
692 Developmental Cell 19, November 16, 2010 ª2010 Elsevier Inc.
‘‘posterior pole plasm’’ and are transmitted to the next genera-

tion directly. In contrast, AGO3 does not seem to be passed

on from mother to offspring, suggesting that antisense piRNAs

may be selectively inherited, whereas sense piRNAs are not.

Brennecke et al. revealed that piRNAs are truly transmitted

from mother to offspring (Brennecke et al., 2008). This maternal

inheritance of piRNAs was shown to explain a long-standing

but poorly understood phenomenon of ‘‘hybrid dysgenesis,’’ in

which the introduction of new genetic material via the male

germline induces genetic instability in female progeny (Kidwell

and Kidwell, 1976). The relevant genetic material was known to

include TEs for some time (e.g., Rubin et al., 1982), and a mater-

nally transmitted epigenetic suppressor, called a cytotype, had
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Figure 4. Endo-siRNA Biogenesis
Like piRNAs, endo-siRNAs are mainly derived from TE transcripts. In this
pathway, Dicer2 associates with Loqs-PD, both of which are required for
endo-siRNA processing from their dsRNA precursors. Mature endo-siRNAs
are loaded onto AGO2.
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been proposed (Engels, 1979), but it took several decades

before piRNA characterization progressed to a point where the

realization could be made that the cytotype corresponds to

maternally inherited PIWI/piRNA complexes (Figure 2; Bren-

necke et al., 2008). These results extended the paradigm of

piRNA-dependent germline integrity, to provide molecular

insight into the epigenetics of incompatibility between diverging

animal subpopulations.

Interestingly, fertility is enhanced by two environmental

factors, age and high temperature (Bucheton, 1978). Heat shock

protein 90 (Hsp90), a chaperone involved in several cellular and

developmental pathways, has been implicated in TE control

mediated by piRNAs (Specchia et al., 2010). Mutations affecting

Hsp90, or treatment with the specific Hsp90 inhibitor geldana-

mycin, decreased piRNA biogenesis and increased the expres-

sion levels and the mobilization rates for all types of TEs. These

observations suggest that Hsp90 may act as a piRNA factor and

couple the control of TEs to environmental inputs.

Endogenous Small Interfering RNAs: Biogenesis
Recent studies have indicated that TE silencing by small RNAs is

not a gonad-specific event. Rather, TE transcripts are converted

into a subset of small RNAs in nongonadal somatic cells,

which display different characteristics from those of piRNAs.

These small RNAs are designated endo-siRNAs or esiRNAs.

In Drosophila, endo-siRNAs specifically bind to AGO2, the

effector of RNAi (Figure 4). AGO2 was originally demonstrated

to associate with exogenous siRNAs (exo-siRNAs) derived

from external dsRNAs in RNAi. The exo-siRNAs produced from

viral dsRNAs have been shown to serve as a defensemechanism

against viral infection (Galiana-Arnoux et al., 2006; van Rij

et al., 2006; Wang et al., 2006). However, the recent discovery

of endo-siRNAs clarified that AGO2 does not always wait for

‘‘external’’ siRNAs, but rather plays particular roles in cellular

RNAi with endo-siRNAs.

Like piRNAs, endo-siRNAs are mainly derived from TEs,

heterochromatic regions, and intergenic elements of the

genome. The endo-siRNAs occasionally arise from protein-

coding genes transcribed from overlapping 30 untranslated

regions (UTRs) or long hairpin RNA genes (Czech et al., 2008;

Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura et al.,

2008). Sequencing of small RNAs in Drosophila embryos,

ovaries, and the S2 cell line has revealed that endo-siRNAs are

21 nt long and broadly map across the locations of most TEs

in both the sense and antisense orientations (Figure 4). However,

they do not show an obvious nucleotide preference at their 50

end. These characteristics, together with the observation that

endo-siRNAs show a typical phasing pattern when mapped on

the genome, suggest Dicer2 involvement in the processing

pathway. In fact, loss of dicer2 function abolished the production

of endo-siRNAs in vivo (Czech et al., 2008; Kawamura et al.,

2008; Okamura et al., 2008). It had previously been shown that

Dicer1 partners with the dsRNA-binding partner Loquacious

(Loqs) to generate miRNAs (Förstemann et al., 2005; Jiang

et al., 2005; Saito et al., 2005), whereas Dicer2 uses the related

protein R2D2 during exo-siRNA production (Liu et al., 2003). It

therefore came as a surprise to find that endo-siRNA biogenesis

occurs by an unusual combination of Dicer2 and Loqs (Czech

et al., 2008; Okamura et al., 2008). This confusion was resolved
D

when it was discovered that the loqs gene gives rise to four

isoforms, loqs-PA-loqs-PD (Förstemann et al., 2005; Hartig

et al., 2009; Zhou et al., 2009; Miyoshi et al., 2010), such that

Loqs-PB and Loqs-PD are involved in the miRNA and endo-

siRNA processing pathways, respectively (Hartig et al., 2009;

Miyoshi et al., 2010; Zhou et al., 2009). Indeed, Loqs-PB associ-

ates with Dicer1, whereas Loqs-PD associates with Dicer2.

These specific associations of Loqs isoforms with Dicer proteins

most probably confer the ability of Dicer proteins to discriminate

small RNA precursor substrates. The involvement of Loqs-PD in

TE silencing might be modest, because endo-siRNA production

depends less on Loqs than Dicer2 and AGO2 (Chung et al., 2008;

Czech et al., 2008).

Endo-siRNA-Mediated TE Silencing
In mouse oocytes, the endo-siRNA pathway plays important

roles in TE silencing (Tam et al., 2008; Watanabe et al., 2008;

Murchison et al., 2007). However, the effects of endo-siRNAs

are subtler in Drosophila, where TEs are derepressed (1.5- to

9-fold) when dicer2 or ago2 gene functions are lost, but only

a small subset of specific TEs are affected, and the mutant flies

are viable and fertile (Chung et al., 2008; Czech et al., 2008; Ghil-

diyal et al., 2008; Kawamura et al., 2008). It is plausible that the

absence of strong phenotypesmay be due in part to redundancy

with piRNAs: Endo-siRNA factors are expressed in germline cells

where piRNA-mediated silencing occurs, and sequence analysis

has shown that AGO2-associated endo-siRNAs often map to
evelopmental Cell 19, November 16, 2010 ª2010 Elsevier Inc. 693
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piRNA clusters. Thus, these regions of the genome are able to

produce both endo-siRNAs and piRNAs. This raises important

questions about how sense and antisense strands from these

piRNA clusters form dsRNAs to produce endo-siRNAs and

how they stay single stranded as piRNA precursors.

Conclusions
Despite their sequence diversity, piRNAs and endo-siRNAs do

not disturb the expression of protein-coding genes. Thus, there

must be strict cellular systems that discriminate TEs from

protein-coding genes. How does this operate in vivo?One possi-

bility is that TEs are identified at the transcription stage. Rhino

contributes specifically to piRNA production from dual-strand

piRNA clusters but not from uni-strand clusters, suggesting

that Rhino can discriminate between the two clusters. Because

Rhino is an HP1 homolog, it is most likely that Rhino functions

at the transcriptional level, although there is no direct evidence

to support this. The second possibility is that TEs are identified

at the posttranscriptional level. TEs are transcribed by RNA poly-

merase II and are poly(A)-tailed, suggesting that piRNA precur-

sors and mRNAs may contain similar structural characteristics.

This would make it difficult to discriminate between TE tran-

scripts and protein-coding transcripts. However, there should

be cellular mechanisms that can separate the two species. It

would be of interest to identify these mechanisms in Drosophila

and in other species, such as mice.
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