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Figure S1. The amplification loop-independent piRNA
= - Tubulin production in OSC. (a) Western blot analysis was performed

with anti-Vasa, -Piwi, -Aub, and -AGO3 antibodies on lysates of

S2 cells, fly ovaries, and OSCs. Anti-Tubulin was used as an
P w/anti-myc internal control. (b) OSCs were stained with an anti-Faslll
< antibody. All cells in culture were FasllI-positive. (c) OSCs were
stained with an anti-Piwi antibody. This confirmed that Piwi in
OSCs is localized in the nucleus as in ovaries. (d) RT-PCR for
Ago3 and Dmhen1/Pimet. Expression of Ago3 was not detected
in OSCs. (e) qRT-PCR confirmed that the level of ago3
expression is very low in OSCs (100-fold lower compared with
that in ovaries and 1,610-fold lower compared with piwi mRNA
in OSCs). (f) Small RNAs associated with Piwi showed
resistance to periodate oxidation/b-elimination treatment, a
hallmark for 2’-O-methyl modification at the 3’ end. (g) Western
blotting data (left panel) show that Piwi was successfully
depleted from OSCs by siPiwi-mediated RNAi. The sequences
of siRNAs (siPiwi and siEGFP) used in these experiments are
shown in Supplementary Table 2. siPiwi corresponds to the
N-terminal end of Piwi, spanning from glutamic acid58 to
glycine64. Even in OSCs, where Piwi was depleted, piRNAs
were efficiently loaded onto Piwi (Piwi-DN-DDAA mutant) (right
panel). These results support a model in which the primary
piRNA processing and the piRNA loading on Piwi appear to
occur in the cytoplasm in a Piwi-Slicer-independent manner.
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Figure S2. Bioinformatic analysis for piRNAs in OSC. (a) The heat map (left panel) indicates the strand bias
of cloned piRNAs and piRNAs® with respect to canonical transposon sequences (indicated on the right side).
Transposons are grouped into long terminal repeat (LTR), long interspersed nuclear (LINE) and inverted
repeat (IR) elements. The color intensities indicate the degree of strand bias (green, sense; red, antisense;
yellow, unbiased). The cloning frequencies of individual transposons in all four complexes (this study and ref.
3) are indicated as a heat map (right panei). (b) Distributions of OSC-piRNA base sizes. (c) Exciusion of
piRNAs with 1*-U from the piRNA pool did not uncover any other obvious bias, including 10"-A. (d) Profiles of
10-base binding partners representing the ratio of piRNAs in a dataset that form 10-base binding to another

piRNA dataset. 153 pairs were found in total 16,511 piRNAs in OSCs.
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Figure S3. Frequency maps of OSC-piRNAs. Frequencies of mapped piRNAs are depicted as bar graphs
aligned on chromosomes. The green bars represent the forward strand while the red bars are the reverse
strand. Frequency maps for piRNAs that have a single copy in the genome are presented on the right column.
Apparent spikes are found in a neighboring region of the centromere of chromosomes 2L and X.
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Figure S4. piRNAs (unique mappers) derived from flam are summarized. The top panel (OSC
Piwi-associated piRNAs) shows flam-piRNAs found in our study. The middle panel (ovary Piwi-associated
piRNAs) shows flam-piRNAs found in the previous study by Brennecke et al.>. The bottom shows repetitive
elements found in the region. The location of DIP1, a protein-coding gene located in flam, is also shown.
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Figure S5. The {j gene gives rise to TJ protein and {-piRNAs in OSC. (a) Western blotting analysis shows that
TJ is strongly expressed in OSCs. Anti-Tubulin was used as an internal control. (b) Northern blotting analysis
shows that one piRNA originating from &f mRNA, tj-piR-1, indeed exists in small RNAs associating with Piwi in
OSCs. n.i.: non-immune IgG was used as a negative control. Total RNA: 5 mg of total RNA of OSCs was
used.
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Figure S6. fi-derived piRNAs found in the ovarian total small RNA library by Czech et al°. (a) piRNAs
originating from §f MRNA 3’'UTR (green bars; all sense-oriented) were also found in the ovarian small RNA
library produced by Czech et al.?’. (b) The size distribution of t-piRNAs shown in (a). (c) Examination of
nucleotide bias indicated that -piRNAs shown in (a) have mostly uracil at the 5" ends (1>-U).
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Figure S7. kip710a- and brat-derived piRNAs in OSC. (a) Some OSC-piRNAs were found to be derived from
the 3’ UTR of the kip70a located on the X chromosome. Note that some others originated from the flanking
region of kip10a at its 3’ end. These might arise from the klp70a mRNA precursor or mature mRNA that
contains a longer 3' UTR than those registered in the FlyBase as FlyBase Protein-coding genes. Northern blot
analysis (right panel) shows that klp10a-piR-1 indeed exists in small RNAs associating with Piwi in OSCs, but
was not loaded onto AGO1 in OSCs. n.i.: non-immune IgG was used as a negative control. Total RNA: 5 mg
of total RNA of OSCs was used. (b) OSC-piRNAs derived from the 3’ UTR of brat, located on chromosome 2L
were also observed. Note that some others originated from the flanking region of brat at its 3’ end. These
might arise from the mRNA precursor or mature mRNA that contains a longer 3° UTR than those registered in
the FlyBase. Northern blotting analysis (right panel) shows that brat-piR-1 exists in small RNAs associating
with Piwi in OSCs, but was not loaded onto AGO1 in OSCs. n.i.: non-immune IgG was used as a negative
control. Total RNA: 5 mg of total RNA of OSCs was used.
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Figure S8. Immunofluorescence analyses of piwi and aub mutant larval ovaries. (a) In piwi mutant larval
ovaries, TJ-positive cells fail to intermingle with PGCs. Interstitial cells and GSCs found in late third instar
larval ovaries express TJ (green) and Vasa (magenta), respectively. In control (piwi’/Cy0), TJ-positive cells
and PGCs form a mixed cell population. By contrast in piwi homo mutant (piwi*/piwi®) ovaries, TJ-positive
cells do not intermingle with PGCs, but instead form coherent clusters. Scale bars; 20 ym. (b) aub mutants
(aub®“**laub"™?) did not show the failure of intermingling phenotype. Scale bars; 20 pym.
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Figure S9. Immunofluorescence analyses of tj mutant larval ovaries and testes. (a) In the control (t°*"*°/Cy0)
Piwi (magenta) is expressed in both Tj- (green) and Vasa (blue)-positive cells. In the & mutant ("> /"),
somas do not intermingle with PGCs. Piwi is not expressed in mutant somas. (b) In control (4°°*/Cy0O and
ti*7*°/Cy0) testes, Piwi is strongly detected in somas. In #°°%/t*°* and t/**"*°/ t/"*"** testes, expression of Piwi is
no longer detected in somas but is strongly detected in Vasa-positive GSCs and developing cells. Piwi, TJ
and Vasa are shown in magenta, green and blue, respectively. Scale bars; 50 mm. In the tj mutant (t*"*°/
ti**"*) testes, Piwi is not expressed in somatic cells but is highly detected in GSCs and their developing cells.

The bottom panels show magnification of the boxed areas in the middle panels. Scale bars; 50 ym.

larval testis
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Figure S10. Targeting prediction. (a) ChIP analysis using anti-TJ antibody. Short DNA sequences
[summarized in (a); #1 to #10] near the putative transcriptional start site of the piwi gene (corresponding to the
5" end of Exon1) were examined for association with TJ in OSCs. AT-rich half MARE (Maf-recognition

element), which is conserved in many genes regulated by Maf factors in various species?,

is found in both #9

and #10 DNA fragments. Note that AT-rich half MARE found in D. melanogaster piwi gene (tttatTGCTGA) is
conserved in a variety of Drosophila species, such as D. pseudoobscura (aatatTGCTGA) and D. mojavensis

(aaattTGCTGA). (b) TJ directly associates with piwi gene.
(c) Some of tj-me-piRNAs identified in this study show
transcript.

non-immune IgG was used as a negative control.
strong complementarities to the faslll precursor
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Table S1. Cloning profiles of piRNAs derived from coding genes. A number of coding genes give rise to
piRNAs from their 3’UTRs. This table shows that 1,227 coding genes are sources of at least one copy of a
piRNA. A small set of coding genes produce more than 10 copies of piRNAs from their 3’'UTRs. Among them,

traffic jam stands out with an excessive number of piRNAs produced.

Number Total

Reads | of gene Genes List reads
322 1 traffic jam 322
31 1 CG32000 31
29 1 jim 29
24 1 brat 24
22 3 CG41099, Art4, Nipped-A 66
20 1 dm 20
16 1 Tif-1A 16
14 1 Chde4 14
13 3 trol, CG41580, kip10A 39
12 3 krz, plexA, CG32654 36
10 5 fng, Atpalpha, CG9257, Sema-1a, CG10289 50
1-9 1206 2123
Total 2770

www.nature.com/nature

n



doi: 10.1038/nature08501

Supplementary Table 2 Sequences of primers used for qRT-PCR, construction of Piwi

SUPPLEMENTARY INFORMATION

mutants and ChIP analysis and RNAi. All sequences are shown in 5’ to 3’ direction.

Experiment | Gene Primer forward Primer reverse
Piwi D614A GACTGATGACAATTGGCTTTGCC CTCGTGTGCTCTTCGCAATGGCAAA
Mutagenesis ATTGCGAAGAGCACACGAG GCCAATTGTCATCAGTC
Primer Piwi D685A GCCATCTCGAATCGTATTTTATCG | GAGAGCCGGAGCTCACACCGGCTC
AGCCGGTGTGAGCTCCGGCTCTC GATAAAATACGATTCGAGATGGC
RP49 CCGCTTCAAGGGACAGTATCTG ATCTCGCCGCAGTAAACGC
gRT-PCR Piwi CAAGGCCGGATAATTGGACA CCATCGCTCGGAGTGGTAAG
Aubergine GGGATGACCAGCAAGAAAGG AAGACCGTCGCAGTCGTGTA
AGO3 CTGCATTTGTGGCCTCCATA GGGGAGTTTGCCATTCCTTT
FaslIII AACCCAACACAGCGCTCCTC ATCCGGGTGTCTTGCTCCAC
Traffic Jam ACCAGTGGCACATGGACGAA CGCTCCCGAAGATGTGTTCA
Zucchini CCCCATTACCACGAACTTGA CCAAGAGCCGTCCAGTTTAC
Piwi #1 TGTCATCTCCGGATTTTGGT ACCTACGCATCGGCTAGAAA
ChIP-gPCR Piwi #2 TTTCTAGCCGATGCGTAGGT GTGAGGTTTCAACCGGAAAA
Piwi #3 TTTTCCGGTTGAAACCTCAC AACCGTGTGAACTGGCTTTC
Piwi #4 ACGCGCCTAGTTATTTTTGC ACGGGATGACTTGGAAATTG
Piwi #5 AATTCTGCGAAGGTTTTCCT CAATCGTTGCAAGAGCCTTA
Piwi #6 GCAGGGTGGCTGTTTTGTAT GTGACCAAATGGCCAGATTT
Piwi #7 ACTGAGTCCAAAGCGTCGTT GGTGTCGAATTCCGAAGAAA
Piwi #8 ACCATCACCTGACAGGAAGG CTAACGGTCAAGCTACGAAAA
Piwi #9 TGCAGGCAAAGCATACTACAA CGTGCGAGATTCAGCAATAA
Piwi #10 CATCGCGATTGTTTTCAATG TCCTCGAGAGCTCTTCTCTCTC
Experiment | siRNA name siRNA sense siRNA antisense
EGFP-si GGCAAGCUGACCCUGAAGUTT ACUUCAGGGUCAGCUUGCCTT
RNAi1 Piwi-si GCUCCCAGGCGUGAAGGUGTT CACCUUCACGCCUGGGAGCTT
Zucchini —si GCAUUGCCGUCAGCACUGUTT ACAGUGCUGACGGCAAUGCTT
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