Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila

Filippo M. Cernilogar1,2,*, Maria Cristina Onorati1,*, Greg O. Kothe4, A. Maxwell Burroughs5, Krishna Mohan Parsi1,2, Achim Breiling6, Federica Lo Sardo7, Alka Saxena2, Keita Miyoshi8, Haruhiko Slomi2, Mikiko C. Slomi2,8, Piero Carninci5, David S. Gilmour4, Davide F. V. Corona1 & Valerio Orlando1

RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21–30 nucleotide) RNAs1–6. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation7–10. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.

Accumulating evidence indicates that RNAi components and small RNAs function in the nucleus to control heterochromatin formation, as well as repeat-induced gene silencing and transposable element mobilization11. However, the global association of RNAi components with chromatin and their role in transcriptional regulation remains to be elucidated. To investigate a role for RNAi in the chromatin dynamics of a multicellular organism and, possibly, in transcriptional gene silencing, we first determined whether any of the key RNAi components are present in the nucleus of Drosophila cells. Cellular fractionation of embryonic tissue culture cells (S2 cells) showed that the microRNA-processing factors DCR1 and AGO1, as well as the RNAi component AGO2, are equally distributed between the cytoplasm and the nucleus (Supplementary Fig. 1a). By contrast, the RNAi protein DCR2 is greatly enriched in the nuclear fraction (Supplementary Fig. 1a). To evaluate the association of RNAi components with the different nuclear compartments, we carried out chromatin fractionation experiments11 (Supplementary Fig. 1b, c). A substantial amount of DCR2 and AGO2 was detected in chromatin fractions, together with RNA polymerase II (RNA Pol II), Negative elongation factor E (NELF-E), Polycomb (Pc) and histone H3 (Supplementary Fig. 1c). By contrast, most of the cellular DCR1 and AGO1 was found in the Triton X-100 soluble fraction (S1 fraction), together with tubulin, a marker for proteins that are not associated with chromatin (Supplementary Fig. 1c). Taken together, our data indicate that the DCR2–AGO2 complex is mainly associated with chromatin, whereas the DCR1–AGO1 complex is mostly cytoplasmic, in accordance with its cytoplasmic function (that is, post-transcriptional gene silencing).

To determine whether RNAi components associate with chromatin in vivo, Drosophila polytene chromosomes were stained with AGO2 and DCR2-specific monoclonal antibodies12,13. Both AGO2 and DCR2 were detected at several hundred sites on polytene chromosomes from wild-type larvae (Supplementary Figs 1d, g and 2a, b). By contrast, little or no staining was detected in Ago2- or Dcr2-null chromosomes1,2 (Supplementary Fig. 1f, i and Supplementary Table 1a). Strikingly, the majority of AGO2- and DCR2-associated loci correspond to interbands, suggesting that AGO2 and DCR2 preferentially associate with euchromatic, transcriptionally active, loci14 (Supplementary Fig. 2a, b). In particular, the chromatin binding of DCR2 requires AGO2, but the converse is not true (Supplementary Fig. 3), suggesting that AGO2 also acts as the RNAi effector complex on chromatin.

Interestingly, AGO2 and DCR2 are present at the 87A and 87C cytogenetic loci (Supplementary Fig. 1e, h). These cytogenetic loci contain copies of the heat-shock gene Hsp70, thus providing well-characterized inducible candidate genes with which to investigate the role of DCR2 and AGO2 in transcription and, in particular, in RNA Pol II pausing regulation15,16. To determine whether DCR2 and AGO2 affect Hsp70 transcription, Hsp70 transcript levels were measured in control cells and in cells depleted of DCR2 or AGO2 (Supplementary Fig. 4). The knockdown of either RNAi component resulted in a significant increase in Hsp70 transcripts in non-heat-shocked cells (Fig. 1a, b). Similar results were obtained for a second heat-shock gene, Hsp68 (Fig. 1a, b). The increased expression of Hsp70 and Hsp68 in cells depleted of DCR2 could be reversed by the expression of a Flag-tagged wild-type copy of DCR2 (DCR2–Flag) (Fig. 1c), indicating that the change in expression was not the result of an off-target effect of the Dcv2 RNAi. Interestingly, the levels of the endogenous AGO2 protein increased together with the expression of wild-type DCR2–Flag (Supplementary Fig. 4a), suggesting that the DCR2–Flag protein is integrated into the RNAi pathway and that re-establishment of functional levels of DCR2 and AGO2 rescues the observed transcriptional defects in heat-shock genes. However, the depletion of DCR2 and AGO2 did not affect the expression of Hsp70 and Hsp68.

1Dubboce Telethon Institute, Epigenetics and Genome Reprogramming, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy. 2Dubboce Telethon Institute, IGB ABT-CNR, Via Pietro Castellino 111, 80131 Naples, Italy. 3Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. 4Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. 5RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. 6Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany. 7Keio University School of Medicine, Tokyo 160-8582, Japan. 8JST, CREST, Saitama 332-0012, Japan. 9Present address: Heimholtz Center Munich, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Munich-Neuherberg, Germany.

*These authors contributed equally to this work.

©2011 Macmillan Publishers Limited. All rights reserved
Figure 1 | RNA Pol II promoter-proximal pausing on Hsp70 is decreased in cells treated with Dcr2 RNAi. a, b, Quantitative RT–PCR analysis of heat-shock (HS) gene transcripts. RNA from S2 cells treated with enhanced green fluorescent protein (EGFP) dsRNA (control), Dcr2 dsRNA (a) or Ago2 dsRNA (b) was analysed with primers specific for the indicated heat-shock genes. c, Induction of the Dcr2–Flag transgene is able to revert the phenotype induced by DCR2 depletion. S2 cells that had been stably transfected with a Dcr2–Flag transgene were treated with EGFP dsRNA (control) or Dcr2 dsRNA. Dcr2–Flag expression was induced only in the Dcr2 RNAi sample, by the addition of copper. The samples were analysed before and after a 72-h induction of the transgene. The transcript levels are shown with respect to the EGFP control (experiment control ratio); n = 3. The bars represent the mean ± s.d. d, Hsp70 DNA–FISH on polytene chromosomes from wild type (WT), homozygous Dcr2L811fsX (Dcr2–/–) or homozygous Ago2414 (Ago2–/–) mutant larvae, showing the merge of DNA (blue) and FISH (green) signals (top) and DNA staining (bottom). e, Schematic representation of the Hsp70 transcription unit with the position of the PCR amplicons used in this study. The numbers indicate the middle of each ampiclon with respect to the transcription start site (arrow). f–h, ChIP analysis of the heat-shock gene Hsp70. Chromatin from S2 cells during heat shock, suggesting that RNAi activity is not involved in heat-shock-gene-mediated activation (Supplementary Fig. 5a, b).

Typically, the activation of heat-shock genes results in the chromosomal decondensation of heat-shock loci, forming large puffs on polytene chromosomes17. Therefore, we used DNA fluorescence in situ hybridization (DNA–FISH) to look at the chromatin structure of heat-shock loci in polytene chromosomes with specific null mutations of Dcr2 and Ago2. Interestingly, we observed that the 87C locus is partially decondensed in Dcr2L811fsX and Ago2414 mutant chromosomes relative to the wild-type controls (Fig. 1d). The 87C locus contains four copies of Hsp70 distributed over 30 kilobases. Decondensation was not evident at 87A, probably because this locus has only two copies of Hsp70 within a region of less than 10 kilobases.

Because the data from PCR following reverse transcription (RT–PCR) and from cytogenetic analyses suggested that the maintenance of RNA Pol II pausing was defective, we used chromatin immunoprecipitation (ChIP) to measure the level of RNA Pol II with a phosphorylated Ser-5 residue that is present on the Hsp70 gene before and after heat shock (Fig. 1e, f). The primers used for quantitative PCR analysis of the immunoprecipitated DNA spanned several regions of the Hsp70 gene. An upstream primer set centred at −154 bases from the transcription start site was used to detect the heat-shock element; the +58 primer set encompassed the region of the paused polymerase55; and two other primer sets were downstream within the transcription unit, extending toward the end of the gene (Fig. 1e). Consistent with previous observations55, the RNA Pol II profile observed in S2 cells showed a peak in the region of paused RNA Pol II (+58 primer set) (Fig. 1f), which increased after heat shock. Furthermore, ChIP analysis showed that DCR2 and AGO2 were present at the Hsp70 promoter region (−154/+58) (Fig. 1g, h and Supplementary Fig. 6). Interestingly, after heat shock, the levels of both DCR2 and AGO2 proteins increased in the Hsp70 promoter region (Fig. 1g, h, Supplementary Figs 1i, 6 and Methods). Consistent with RT–PCR and cytogenetic data, DCR2 depletion consistently decreased the level of RNA Pol II on Hsp70 in the region of the paused polymerase (primer set +58) (Fig. 1i).

We extended our ChIP analysis to the NELF-E protein, which is part of the transcriptional regulatory complex that causes RNA Pol II pausing18–19. Depletion of DCR2 caused the level of NELF-E on Hsp70 to decrease in the +58 region, where RNA Pol II pauses (Fig. 1j). The total cellular levels of RNA Pol II and NELF-E protein were not altered by DCR2 depletion (Supplementary Fig. 4b), indicating that the diminished level of RNA Pol II and NELF-E detected on Hsp70 is not a consequence of a decrease in the amount of available protein. Conversely, in DCR2-depleted cells, we observed a reduction in the level of the AGO2 protein (Supplementary Fig. 4b). This was not simply a result of cross-targeting of the double-stranded RNA (dsRNA) because the level of the Ago2 transcript was unaffected (Supplementary Fig. 4c). Likewise, Ago2 dsRNA resulted in reduced DCR2 protein levels (Supplementary Fig. 4d) without affecting Dcr2 messenger RNA levels (Supplementary Fig. 4e). These results suggest that DCR2 and AGO2 stabilize each other in a protein complex that is important for repressing heat-shock genes in uninduced cells.

To confirm that DCR2 depletion affected RNA Pol II pausing on Hsp70, we carried out permanganate footprinting analysis. Permanganate reacts with thymine bases in regions of single-stranded DNA, revealing the presence and location of transcriptionally engaged RNA Pol II. We observed a significant reduction in permanganate reactivity of thymine residues at +22 and +30 of Hsp70 in DCR2-depleted cells (Fig. 1k, l), which is in agreement with the reduced occupancy of the DNA by RNA Pol II in this region (primer set +58) that was shown by ChIP (Fig. 1l).
Hence, DCR2 is involved in maintaining paused RNA Pol II at the observed Hsp70 loci.

Heat-shock gene expression and loss of paused RNA Pol II on depletion of DCR2 could be a consequence of stress induced by depletion of the RNAi machinery in the cell. Therefore, we evaluated the impact of purifying the RNAi pathway on the transcription of non-heat-shock genes. Four non-heat-shock genes (CG9008, fze, rho and mfas) that have paused RNA Pol II were analysed by permanganate footprinting. Depletion of DCR2 was found also to alter the distribution of RNA Pol II in the promoter-proximal region of these genes (Supplementary Fig. 7). These changes were also accompanied by differences in transcript levels (Supplementary Fig. 8). Notably, the observed changes in RNA Pol II resulted both in upregulation (for CG9008, fze and rho) and downregulation (mfas) of the corresponding transcripts (Supplementary Fig. 8). Thus, the RNAi machinery can influence RNA Pol II pausing at non-heat-shock genes, arguing against a nonspecific DCR2-induced heat-shock response.

During heat shock, most of the Drosophila genome is transcriptionally quiescent. The elongating RNA Pol II dissociates from euchromatic interbands and accumulates at heat-shock loci. We used this dynamic RNA Pol II relocalization behaviour to follow the chromatin binding and distribution of elongating RNA Pol II (which is Ser-2-phosphorylated), as well as AGO2 and DCR2, in vivo. In agreement with the ChIP results (Fig. 1h), we found that, after heat shock, AGO2 accumulated at heat-shock loci (Fig. 2a). However, in contrast to RNA Pol II, the association of AGO2 with other loci appears unchanged (Fig. 2a). When we analysed the dynamic chromatin repositioning of RNA Pol II after heat shock in Ago2-null mutant chromosomes, we found that RNA Pol II was still accumulated at the heat-shock loci (Fig. 2b). Strikingly, a substantial fraction of elongating RNA Pol II in Ago2- mutants was retained at many euchromatic sites after heat shock (Fig. 2b). The same behaviour was observed for the Dcr2 mutant (Supplementary Table 2). Taken together, these results show that AGO2 and DCR2 associate with many euchromatic sites and that their activity is probably required for the correct execution of global transcriptional repression after heat shock.

To dissect the role of RNAi in RNA Pol II regulation, we used three mutants that each carried a single amino acid substitution affecting the following RNAi activities: the helicase (Dcr2), the dicing (Dcr2) and the AGO2 slicing (AGO2) activities (Supplementary Table 1a). To check for DCR2- and AGO2-specific requirements, we first used DNA-FISH to analyse chromosome decondensation at Hsp70 loci. Puffing frequencies were increased in all three mutants, particularly in the AGO2 slicing mutant (AGO2) (Supplementary Table 1b). In addition, in all of these mutants, the Hsp70A, Hsp70B and Hsp68 transcripts were present at increased levels before heat shock, compared with wild type (Supplementary Fig. 9). Interestingly, the transcript increase was also evident at 87A (Hsp70A), where the chromatin decondensation was not appreciable at a cytogenetic level (Supplementary Fig. 9 and Supplementary Table 1b). Thus, all tested mutants induced transcript upregulation of the Hsp70 genomic region, although this was not always accompanied by chromatin decondensation. The uncoupling of chromatin decondensation and transcriptional activation has been reported previously, although in this case we cannot exclude an RNAi-dependent post-transcriptional mechanism influencing the Hsp70A transcript levels.

Next, we analysed RNA Pol II distribution and dynamics on polytene chromosomes in the same Dcr2 and Ago2 mutants. Remarkably, although with a different degree of penetration, all three mutants failed to relocalize elongating RNA Pol II after heat shock (Fig. 2c–f and Supplementary Table 2), suggesting that RNAi enzymatic activity is involved in the global RNA Pol II dynamics following the heat-shock stress response.

The association of RNAi components with RNA Pol II complexes has been reported in other systems. To investigate the possibility that these proteins are part of a complex that regulates RNA Pol II elongation, thus establishing a link with the observed ‘pausing’ defects, we tested for interactions between DCR2, NELF-E and RNA Pol II in nuclear extracts derived from Drosophila S2 cells. Immunoprecipitated fractions were evaluated by western blotting for the presence of RNA Pol II, DCR2, AGO2 and NELF-E (Fig. 3a). As expected, DCR2 interacted with AGO2 (ref. 28) (Fig. 3a). In addition, we found that DCR2 and AGO2 interacted with RNA Pol II and NELF-E (Fig. 3a). All of these interactions were resistant to RNase treatment, indicating that they are not an indirect consequence of protein trapping associated with emerging RNA molecules (Supplementary Fig. 10a). Compared with general transcription factors, the amount of RNA Pol II interacting with DCR2 seems to be in the same range as for the TATA-binding protein (TBP), confirming the association of DCR2 with many active loci on polytene chromosomes (Fig. 3b). When we tested the same interaction in DCR2-depleted cells, we observed a decrease in the levels of NELF-E and AGO2 associated with RNA Pol II (Supplementary Fig. 10b). These observations indicate that the DCR2–AGO2 complex influences the association of NELF-E with RNA Pol II, thereby providing a possible explanation for the observation that the
Next, we tried to gauge shifts in small RNA tags derived from discrete transcribed regions at all gene loci in response to heat shock (Supplementary Fig. 14a). We observed little or no relative enrichment along different length intervals, suggesting that these tags are not derived exclusively from promoter regions but are equally distributed along the transcription unit (Supplementary Fig. 13). Although there was a sharp increase in AGO2-associated small RNAs in the heat-shock condition relative to the heat-shock condition negative control immunoprecipitation (confirming the specific association of these tags with AGO2), only a small increase was observed in the heat-shock condition AGO2 immunoprecipitation relative to the normal condition AGO2 immunoprecipitation, suggesting that these transcript-associating tags are present even under normal conditions (Supplementary Fig. 14a). These data suggest a role for AGO2 in regulating RNA Pol II processivity, in addition to promoter regulation.

We then analysed the strand bias of AGO2-associated small RNAs. Sense and antisense tags had a peculiar distribution within individual libraries, with the ratio of the sums of the sense and antisense small RNA tag counts mapping to heat-shock loci and the set of all Drosophila genes being equal to approximately 1 (Supplementary Fig. 14b). However, a comparison of normalized sense and antisense tag counts across AGO2-immunoprecipitation and negative-control-immunoprecipitation libraries showed a pronounced enrichment in antisense tags and little or no enrichment in sense tags, suggesting that antisense tags are highly specific in their association with AGO2 but that
depletion of DCR2 alters the behaviour of RNA Pol II in the promoter-proximal region of several genes.

Our data indicate an involvement of the RNAi machinery in the heat-shock stress response. To evaluate possible heat-shock-induced changes in the expression signature of AGO2-dependent small RNAs, we sequenced small RNAs bound to AGO2 before and after heat shock. Small RNA libraries from S2 cells were generated from RNA fractions obtained by immunoprecipitation with antibodies against AGO2 or with control IgG, with or without heat shock (Supplementary Fig. 11). Basic statistical parameters for the four libraries are listed in Supplementary Table 3. Many sequenced tags mapped to repeat regions in more than one location (Supplementary Fig. 12), which is consistent with previous Drosophila deep-sequenced AGO2-immunoprecipitation libraries3,5. First, we focused our attention on the heat-shock promoter regions (500 base pairs (bp) upstream and 50 bp downstream of the transcription start site). We found that heat-shock loci promoter regions were enriched in small RNAs and showed a marked increase in small RNA enrichment on heat shock. This was most noticeable for Hsp23 and for all Hsp70 loci (Supplementary Tables 4 and 5). This observation prompted us to consider whether the level of small RNAs increased across all promoters3,6. Strikingly, the most enriched promoters were the Hsp70B loci, and Hsp23 was also one of the 20 most enriched loci, suggesting a direct role for AGO2 at these promoters (Fig. 4a). The possible function or role in the heat-shock response of other loci present in the top 20 list is not known.

Figure 3 | DCR2 and the RNAi effector protein AGO2 associate with RNA Pol II and NELF-E. a, Nuclear extracts from Drosophila S2 cells were immunoprecipitated with antibodies specific for the indicated proteins (with IgG as a negative control, top), and the immunoprecipitates (IPs) were analysed by western blotting for the presence of RNA Pol II, DCR2, AGO2 and NELF-E proteins. b, Nuclear extracts from S2 cells were immunoprecipitated with antibodies specific for the indicated proteins (with IgG as a negative control, top) and analysed by western blotting for the presence of RNA Pol II.

Figure 4 | Features of AGO2-associated small RNAs. a, The 20 promoters that are the most enriched in small RNAs under heat-shock versus non-heat-shock (normal) conditions. A comparison of the small RNA fold enrichment in the AGO2-immunoprecipitation (AGO2-IP) libraries between normal and heat-shock conditions is shown for all promoters. b, Relative enrichment calculated as fold change (y-axis) for the sum of all sense or antisense tags across different conditions. The analysed gene/promoter definitions and conditions are labelled below the graph. Little to no sense tag enrichment is observed across gene/promoter definitions, whereas antisense tags show enrichment across the groups, particularly under heat-shock conditions. Neg-IP, negative control immunoprecipitation.
sense tags are not. Additionally, the observed enrichment implies that antisense tag association is strongest in the heat-shock condition (Fig. 4b).

Next, we examined cap analysis of gene expression (CAGE) data that had been generated in Drosophila embryos for the modENCODE project\(^7\), to survey the extent of antisense transcriptional activity at heat-shock loci (Supplementary Table 6). Antisense transcriptional activity was observed at almost all heat-shock loci and, surprisingly, many Hsp70 loci had roughly equivalent levels of sense and antisense transcription (Supplementary Table 6), suggesting a possible source for the observed small RNA tags. Taken together, these data indicate that the observed small RNAs are probably derived from dsRNA precursors and that sequences that are antisense to the loci preferentially associate with AGO2, implying that sense targeting occurs.

In this study, we show that, in Drosophila, RNAi components operate in the nucleus, associate with transcriptionally active (rather than inactive) gene loci, interact with RNA Pol II and contribute to transcriptional control in a multicellular organism, particularly during the heat-shock stress response. Our results reveal that RNAi function has also evolved as a key nuclear pathway that operates in the context of heat-shock stress response. Our results reveal that RNAi function has also evolved as a key nuclear pathway that operates in the context of heat-shock stress response. Our results reveal that RNAi function has also evolved as a key nuclear pathway that operates in the context of heat-shock stress response.
Cytoplasmic and nuclear fractionation. S2 cells were collected twice in ice cold PBS, resuspended in solution II (10 mM HEPES, pH 7.9, 10 mM KCl, 0.1 mM MgCl2), and centrifuged. After centrifugation (2,000 r.p.m. for 10 min at 4°C), the supernatant was collected as the nuclear fraction; 20μl of cells and heat-shocked S2 cells (as described below) with a fixation step of 15–40 min. After fixation, cells were transferred to pre-heated medium and submersed in a 3°C water bath for 40 min. Then, the samples were washed three times in NuPAGE loading buffer and analysed by western blotting.

Preparation of the nuclear extract and immunoprecipitation. The nuclei were prepared from S2 cells, and the protein complexes were immunoprecipitated from the extracts, according to ref. 30 with minor modifications. Briefly, before nuclei immunoprecipitation, 300 μl of cellular extract (600–800 μg) was mixed with 300 μl TEAas buffer (1 mM Tris-HCl, pH 8.5, 100 mM NaCl, 1 mM EDTA) and incubated on ice for 30 min with ice on ice. After centrifugation (12,000 rpm for 20 min at 4°C), the supernatant was collected as the nuclear fraction; 20 μg each sample was analysed by western blotting.

RNAi in S2 cells. S2 cells were grown in serum-free insect culture medium (HyQ SFX, HyClone). The production of dsRNAs (400–500 bp) of EGF, Dcr2 and Ago2 was performed in vitro by T7 transcription. Sense and antisense RNAs were denatured by heating and were re-annealed in water to become dsRNAs. RNAi was performed as described previously and lasted 8–10 days. The primers for the production of T7 templates were as follows: EGFP-F, 5′-ACGTTAAGCGGCAACAGGTTCG-3′; EGFP-R, 5′-TGCTCAGGATGTTGTTGCG3′; DCR2-F, 5′-GGTTGACGATGCAGTATGG-3′; DCR2-R, 5′-TGGATCGTTATGATGATTCCAGCCCAGTC-3′; AGO2-F, 5′-TTATTCTTGCAAGGGAGGACG-3′; AGO2-R, 5′-GCGAATAGCGATGCAGTATGG-3′; for Hsp70 87A, 5′-TTTGCTGCTCGTAAATCCA-3′; for Hsp70 70A, 5′-GGCTCTGCTCGTAAATCCA-3′; for Hsp70 70A, 5′-GGCTCTGCTCGTAAATCCA-3′; for Hsp70 70A, 5′-GGCTCTGCTCGTAAATCCA-3′.

Antibodies. The mouse anti-RNA Pol II antibody (Abcam) was used to detect RNA Pol II as described previously. The rabbit anti-AGO1, anti-AGO2 and anti-DCR2 antibodies in polytene staining, the cytoplasmic and nucleoplasmic background signals were removed (using the ImageJ crop tool in Photoshop,Adobe). To highlight AGO2 and DCR2 chromatin binding, we used the mouse anti-Dcr2 antibody (Abcam ab51028) and the rabbit anti-Ago2 antibody (Abcam ab51028) recognizing the 5′-phosphorylated C-terminal domain. The mouse anti-Ago2 antibody (H5, Covance) recognizes the elongating RNA Pol II, which is phosphorylated at Ser 2 in the C-terminal domain (13,14). The rabbit anti-DHCR2 (ab7375), anti-DHCR2 (ab7372), anti-histone H3 (ab7191) and mouse anti-actin (ab8224) antibodies were from Abcam. The mouse anti-β-tubulin antibody (E7) was from the Hybridoma Bank at the University of Iowa. The mouse anti-Flag (M2) antibody was purchased from Sigma. The mouse anti-Ago1, anti-Ago2 and anti-Dcr2 antibodies have been described previously. The rabbit anti-Pc antibody was provided by R. Park. The rabbit anti-TBP antibody was a gift from J.T. Kadonaga. The anti-NELF-E antibody was described previously. In western blotting experiments, we used a non-commercial anti-DCR2 antibody, kindly provided by Q. Liu, as a negative control.

Immunostaining of salivary gland polytene chromosomes. Polytene chromosomes were prepared from third-instar larva grown at 18°C. Single and double immunostaining was carried out as described previously. The Fab-fragment blocking method was used to stain the chromosomes with anti-AGO2 and anti-RNA Pol II antibodies, both raised in mice. Antibodies were used at the following dilutions: anti-RNA Pol II antibody (H5), 1:200; anti-AGO2 antibody, 1:50; anti-Dcr2 antibody (9D6, RHO), 1:50; mouse anti-DCR2 antibody, 1:100; and anti-Dcr2 antibody (9D6, RHO), 1:100. Given the specificity of the anti-AGO2 and anti-DCR2 antibodies in polytene staining, the cytoplasmic and nucleoplasmic background signals were removed (using the ImageJ crop tool in Photoshop,Adobe), to highlight AGO2 and DCR2 chromatin binding.
Dcr2-Flag transgene was used. After 8 days of dsRNA treatment, the expression of the fusion protein was induced by adding 1 mM CuSO₄.

Chromatin-binding assay. The chromatin-binding assay protocol was essentially as described previously. S2 cells (60 ml, approximately 3–6 × 10⁷ ml⁻¹) were washed with cold PBS. One-tenth of the cell suspension (control fraction, C) was resuspended in RIPA buffer (150 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% DOC, 0.1% (w/v) SDS, 1% (v/v) NP-40, 2 µg ml⁻¹ leupeptin, 2 µg ml⁻¹ aprotinin, 2 µg ml⁻¹ pepstatin, 1 mM PMSF, 1 mM NaF and 1 mM sodium orthovanadate) and left for 30 min on ice. The remaining fraction was lysed for 15 min on ice in cold CSKII buffer (10 mM PIPES, pH 6.8, 50 mM NaCl, 300 mM sucrose, 6 mM MgCl₂, 1 mM DTT, 2 µg ml⁻¹ leupeptin, 2 µg ml⁻¹ aprotinin, 2 µg ml⁻¹ pepstatin, 1 mM PMSF, 1 mM NaF and 1 mM sodium orthovanadate). The cell lysate was divided into two portions, which were centrifuged at 500g at 4°C for 3 min. The supernatants (S1 fraction), which contain Triton-soluble proteins, were further analysed. One of the pellets was washed twice in CSKII buffer and then resuspended in RIPA buffer (the P1 fraction). The second pellet, after washing in CSKII buffer, was resuspended in CSKII buffer (10 mM PIPES, pH 6.8, 50 mM NaCl, 300 mM sucrose, 6 mM MgCl₂, 1 mM DTT, 2 µg ml⁻¹ leupeptin, 2 µg ml⁻¹ aprotinin, 2 µg ml⁻¹ pepstatin, 1 mM NaF and 1 mM sodium orthovanadate), then treated with DNase (Promega) for 30 min and extracted with 250 mM NH₄SO₄ for 10 min at 25°C. The sample treated with DNase and salt was then centrifuged at 1,200g for 6 min at 4°C, and the supernatant (S2 fraction) and pellet (P2 fraction) were collected. The P2 fraction was also resuspended in RIPA buffer. All fractions (20 µg) were analysed by western blotting.

Purification of AGO2-associated RNAs. For heat shock, S2 cells were transferred to pre-heated medium at 37°C and submerged in a 37°C water bath for 40 min. Immunoprecipitation was performed as described previously. Briefly, S2 cells were washed twice in ice cold PBS, resuspended in an EMPIGEN-containing PBS buffer (1% EMPIGEN, 1 mM EDTA, 100 mM DTT, 2 µg ml⁻¹ pepstatin, 2 µg ml⁻¹ leupeptin and 0.5% aprotinin) and incubated on ice for 10 min to lyse cells. After centrifugation (15,000 r.p.m. for 20 min at 4°C), the supernatant was collected. Immunoprecipitation was performed using an anti-AGO2 antibody (9D6) or mouse non-immune IgG (negative control) immobilized on GammaBind beads (GE Healthcare). The reaction mixture was rocked at 4°C for 2 h and washed five times with EMPIGEN-containing PBS buffer.

For silver staining, the washed beads were incubated with 2× sample buffer (20% glycerol, 100 mM Tris-HCl, pH 6.8, 4% SDS and 0.02% bromophenol blue) for 10 min at room temperature, and DTT (200 mM final concentration) was added to the mixture. The sample was then incubated at 95°C for 5 min and resolved by SDS–PAGE. After electrophoresis, the protein bands were visualized by SilverQuest (Invitrogen).

The small RNAs associated with AGO2 were treated with phenolchloroform and precipitated with isopropyl alcohol. The RNAs were then dephosphorylated with calf intestinal alkaline phosphatase (New England BioLabs), labelled with [γ-32P]ATP with T4 polynucleotide kinase (New England BioLabs) and resolved by 21% polyacrylamide denaturing gel.

Small RNA library sequencing and computational analysis. Small RNA libraries were prepared as described previously with one of two barcodes attached to the libraries generated from the immunoprecipitation experiments, regardless of the presence or absence of heat shock. The libraries were sequenced using a Genome Analyzer Ix (Illumina) in two lanes. Linkers and barcode sequences were extracted from the raw tags; the tags were mapped to the Drosophila dm3 genome assembly using the program NextAlign. The genome classification of individual tags was determined by overlap with existing definitions culled from publicly available genome tracks in FlyBase and functional RNA databases. Tags that mapped to more than ten locations in the genome were removed from subsequent analyses; tag counts for the remaining tags were distributed evenly across the total number of mapping sites. Tags were normalized to tags per million before comparisons across libraries. A summary of the basic statistical parameters for the four libraries is provided in Supplementary Table 3. The extraction rates were between 70% and 75% per library (data not shown); mapping rates were above 90% (Supplementary Table 3).

As an additional normalization strategy, the tags per million microRNA count was also tabulated for each library (Supplementary Table 5) because microRNA percentages were largely unaffected by heat-shock treatment (Supplementary Fig. 12); fold enrichments calculated across conditions with these values were consistent with tags per million normalization (data not shown). Sense–antisense antisense were decided according to FlyBase gene definitions; overlapping gene definitions on the same strand were merged, and the tags mapping to overlapping sense–antisense transcripts were included in both sense and antisense totals. Clusters of CAGE tags, which are representative of transcription start site activity, were linked to heat-shock loci using 5′ and D′′ FlyBase gene definitions; each locus was visually inspected in a genome browser, and the gene definitions were adjusted to account for differences in transcription start sites between embryonic tissue and FlyBase gene definitions. Large-scale genome comparisons were carried out using the BEDTools utilities suite.