nature REVIEWS **MOLECULAR CELL BIOLOGY**

Production and actions of small RNAs

V. Narry Kim and Mikiko C. Siomi

Small (20–30 nt) RNAs are associated with members of the Argonaute (Ago) family, which comprises two subfamilies: Ago and Piwi. Based on their biogenesis mechanism and the type of Argonaute proteins that they associate with, at least three classes of small RNAs can be distinguished in eukaryotes: microRNAs (miRNAs), endogenous small interfering

RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs). miRNAs control mRNA stability and translation by targeting cognate mRNAs. endosiRNAs suppress repetitive genes by cleaving their transcripts. Some piRNAs mediate RNA cleavage or heterochromatin formation of transposons, although the functions of most piRNAs are still unknown.

or viral RNAs. Human exo-siRNAs are loaded onto AGO1-4, but only AGO2 has 'slicer' activity. endo-siRNAs are derived from cis or trans senseantisense dsRNAs or long hairpins. They are produced by Dicer and interact with Ago-subfamily proteins. In humans, endo-siRNAs are thought to be loaded onto AGO2; it has not been determined whether they associate with

not shown). Primary processing and loading might occur in the cytoplasm because Piwi proteins MIWI and MILI are localized in the cytoplasm. Factors that are needed for primary processing are unknown. Not shown here are less abundant groups of miRNA-like RNAs that are derived from various sources of short hairpins in a Drosha-independent manner.

Possible mechanisms of action

 \bigcirc

Table | Eukaryotic small RNAs are associated with Argonaute-family proteins

Subfamily	Ago-family protein	Class of small RNA*	Length of small RNA	Origin of small RNA [‡]	Mechanism of action
Mammals					
Ago	AGO1-4	miRNA	21–23 nt	miRNA genes	Translational repression, mRNA degradation, mRNA cleavage and heterochromatin formation?
		endo-siRNA [§]	21–22 nt	Intergenic repetitive genes, pseudogenes and endo-siRNA clusters	mRNA cleavage?
Piwi	MILI (PIWIL2 in humans)	Pre-pachytene piRNA and pachytene piRNA	24–28 nt	Transposons and piRNA clusters	Heterochromatin formation (DNA methylation)
	MIWI (PIWIL1 in humans)	Pachytene piRNA	29–31 nt	piRNA clusters	?
	MIWI2 (PIWIL4 in humans)	Pre-pachytene piRNA	27–29 nt	Transposons and piRNA clusters	Heterochromatin formation (DNA methylation)
	(PIWIL3 in humans)	?	?	?	?
Drosophila melanogaster					
Ago	AGO1	miRNA	21–23 nt	miRNA genes	Translational repression and mRNA degradation
	AGO2	endo-siRNA	~21 nt	Transposons, mRNAs and repeats	RNA cleavage
		exo-siRNA	~21 nt	Viral genome	Viral RNA cleavage
Piwi	AUB	piRNA	23–27 nt	Transposons, repeats, piRNA clusters and Su(Ste) locus	RNA cleavage
	AGO3	piRNA	24–27 nt	Transposons and repeats (unknown in testis)	RNA cleavage
	PIWI	piRNA	24–29 nt	Transposons, repeats and piRNA clusters	Heterochromatin formation?
Schizosaccharomyces pombe	2				
Ago	Ago1	endo-siRNA	~21 nt	Outer centromeric repeats, mating-type locus and subtelomeric regions	Heterochromatin formation

endo-siRNA (tasiRNA including TAS3) 21 nt TAS genes mRNA cleavage	
exo-siRNA 20–22 nt Viral genome Viral RNA cleavage	
AGO4 and AGO6 rasiRNA 24 nt Transposons and repetitive elements Heterochromatin formation	
AGO7 miR-390 21 nt miRNA gene Cleavage of TAS3 RNA	

۲

*Small RNAs that are the main partners of a given Ago protein are listed. *miRNAs, as a class, are expressed in all cell types, whereas endo-siRNAs and piRNAs are expressed abundantly in germline cells and contribute to germline development. [§]So far, only AGO2 has been shown to be required for endo-siRNAs. ^{II}Plants have ten Ago proteins, but only those with known small RNA partners are shown.

Components of the RISC complex at Abcam

Abcam is able to deliver a comprehensive portfolio of all the very best and most up to date antibodies to components of the RISC complex. We are constantly increasing the number of ChIP-grade and batch tested antibodies, enabling the research community to deconstruct epigenetic pathways.

Three of our very best Dicer and Ago antibodies:

- Dicer 1 (ab13502)
- Ago1 (Drosophila) (ab5070)
- Ago2 (Drosophila) (ab5072)
- Two of our very best RISC antibodies:
- TRBP (ab42018)
- DDX6 (ab40684)

All our antibodies to the components of the RISC complex are highly characterized and our datasheets provide a library of relevant information.

Investigate these and other chromatin and RNAi antibodies further at www.abcam.com/RISC

The Abpromise

If our antibodies do not perform as described on the datasheet, notify us within 4 months of delivery so we can help you or offer a replacement or a refund.

Abbreviations

Ago, Argonaute; AUB, Aubergine; CCR4, C-C chemokine type 4; DGCR8, DiGeorge syndrome critical region gene 8; DNMT, DNA methyltransferase; dsRNA, double-stranded RNA; endo-siRNA; endogenous small interfering RNA; exo-siRNA, exogenous small interfering RNA; H, histone; HMT, histone methyltransferase; HP1, heterochromatin protein 1; LOQS, Loquacious; m⁷G, 7-methylguanosine; Me, methyl; miRNA, microRNA; nt, nucleotide; piRNA, Piwi-interacting RNA; Pol II, RNA polymerase II; PACT, PKR-activating protein; pre-miRNA, precursor miRNA; pri-miRNA, primary miRNA; rasiRNA, repeat-associated small interfering RNA; ssRNA, single-stranded RNA; Su(Ste), Suppressor of Stellate; TAS, tasi gene; tasiRNA, trans-acting siRNA; TRBP, HIV-1 TAR RNA-binding protein.

Poster design by Vicky Askew, edited by Arianne Heinrichs, copyedited by Simon Bishop. © 2009 Nature Publishing Group.

Contact information

V. Narry Kim is at the School of Biological Sciences and Center for National Creative Research, Seoul National University, Seoul, 151-742, South Korea. | Mikiko C. Siomi is at Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and at the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama 332-0012, Japan. e-mails: narrykim@snu.ac.kr; siomim@sc.itc.keio.ac.jp

For further reading, see www.nature.com/nrm/posters/smallrnas

Linked review article

Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. (doi:10.1038/nrm2608).

۲